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S U M M A R Y  
A method is proposed for the exact solution of the two-dimensional thermoelastic equations for certain composite 
anisotropic beams by use of single Fourier series. Numerical examples demonstrating the usefulness of this method are 
presented. 

1. Introduction 

The thermal stresses and displacements of a homogeneous isotropic rectangular beam has 
been considered by Wah [1] by use of double Fourier series. Boley [2] and Boley and Tolins [3] 
have discussed the same problem by use of an infinite series of polynomial functions which are 
obtained by a differential recurrence relation. The latter method has also been used by Boley 
and Testa [4] to obtain the solution of a non-homogeneous but locally isotropic beam under 
arbitrary temperature distribution. 

The present study gives the exact solution for the stresses and displacements of a free rec- 
tangular composite beam of length l, height h and small thickness 6 which is under an arbitrary 
temperature distribution. The composite beam consists of n perfectly bonded layers with 
orthotropic thermal and mechanical material properties. The principal axes of orthotropy 
coincide with the beam axes. 

The basic formulation requires that the second derivative of the temperature distribution 
with respect to the length has only a finite number of discontinuities in each layer. This as- 
sumption permits the formal expansion of the temperature distribution in a single Fourier 
series. 

2. Thermoelasticity solution 

Consider a composite beam composed of n orthotropic layers such that the various axes of 
material symmetry are parallel to the beam axes x, y, z. The beam occupies the region 0_< x_< l, 
0 <  y <  h such that 

(h/l) ~ 1. (1) 

The thickness c5 of the beam is assumed sufficiently small for the two-dimensional theory of 
plane stress to apply. Since each layer is orthotropic, the constitutive equations are given by [5] 

~(i) 
~(i) = -xy 
~xy G(i) 

- - x y  

(2) 

where E~ i), E~ i), ~:(i~ v") G(0 are elastic constants such that -x  -yx -v -xr, _y~, _~y, _~y ~"),,") = E :i) v") ~),  @~ are thermal 
expansion coefficients and T ") is the temperature rise and the index i denotes the i th layer 
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numbered from the bottom to the top of the beam. The strain displacement relations are 

~) = u ~) e(o v,~O , v ( o  = u (o . , ,  (i) 
, = . = ,  _ ~  _ _ , =  , (3) 

where comma denotes differentiation. 
If body forces are not considered, then the stress in each layer are determined by the formulas 

a~) = (~ (i) •(o = (~ (0 ~(i) = _ (~ (i) (4) "r ,yy ~ --y "r ,xx , --xy "r ,xy , 

where the Airy stress function q~ in two dimensions must satisfy the equation 

(g(~) (D(i)~ _ [./v(i)yx (]) (i)~ _]_ ( I t . I )  (i)~ - -  I/V(1) ~ ' x Y  (i)~ 

(';) + ~ 4)~) = -(a(i)T(O),~x _ ,(e(i'= T(%,,,,. (5) 
Gxy ,xy 

The stress free boundary conditions on the upper and lower surfaces are given by 

a, (x, h) = z~y (x, h) = O, ay (x, O) = zx, (x, O) = 0 (6) 

It is not possible to satisfy exactly the conditions of zero tractions at the ends x = 0, l, but only 
to satisfy the conditions that the tractions be self-equilibrating, namely that 

6 fho a=(O, y)dy = b fhohax(l, y)dy = O 

5 'fh~ Ya~'(O' y)dy = 6 f ~ Ya~'(l' y)dy = O } (7) 

o z~y(O, y)dy = 6 z~,(l, y)dy = O. (8) 

Hence, condition (1) is necessary so as to insure a meaningful application of Saint-Venant's 
principle. Note that condition (8) is automatically satisfied when conditions (6) and (7) are 
imposed. 

The perfect bonding of the layers requires the continuity of tractions and displacements at 
the interfaces, such that 

(7(/)( X, hi)= -yet(i+ t)( X, hi) , -~,a(i)t~v- hi)= ~,tr(i+ 1)/vV~, hi) 

u(i)(x, hi)= u (i+ 1)(x, hi), v(~ hi)= v(i+l)(x, hi) (i = 1, 2 . . . . .  n - 1 )  ~ (9) 

where hi denotes the height of the interface between the i th and (i+ 1)th layer. 
If the temperature distribution T (~ (x, y) is such that its second partial derivative with respect 

to x contains only a finite number of discontinuities in each layer, then it is possible to represent 
formally the temperature on the right-hand side of (5) in a single Fourier series. Let 

T(1)(x, y) = ~ yii)(y) sin mrcx (10) 
m=l  l 

where 
2 (l . mTrx y~i)(y) = ~ j T(O(x, y) sin ~ - -  dx . (11) 

0 

End conditions (7) are satisfied by expressing the stress function in the form 

mTrx 
(~(i) = f(i)(y) s i n -  (12) 

rn=l l 

Substitution of (10) and (12) into (5) and assuming homogeneous layer yields 
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, yx | (i) 
E}~ ) dYr f(i)(y)_ ~G~r - 2 E(!)] ~ f~ (y) 

+ ~ - -  f : ( Y ) =  - -aT Y 2 ' ( Y ) + ~  - -  r2'(y). (13) 

Assuming distinct roots, the general solution of the fourth order ordinary differential 
equation (13) is 

f~0 (y) = A~) exp (2~)~ y) + B~ ) exp (2~)~ y) 
+ C~ ) exp (2~)~ y) + D~ ) (i) -(i) exp (/~m4 y) +f~ (y) (14) 

where A~ ), B~ ), C~ ), O~ ~ are arbitrary constants, f~O(y) is a particular integral of (13), and the 
four roots are determined as 

(15) 

In the case of isotropic layers, Equation (13) becomes 

dY 4 f:O(y)_ 2 dy__ 2 f:O(y) + __ f~i)(y)= -o~E {~-~y2 Y~mO(Y) - ( 7 )  Y~/)(Y'} 

(16) 

for which the general solution is 

f~O(y)=(A~)+C~)y)exp(~_ y) + (B~,+D,~,y)exp (_ 1 ~ y) + :~O(y). (17) 

Using the genera[ orthotropic results (14) and (15) the stress and displacement (aside from 
rigid-body terms) components can be written as follows 

= s i n - - f -  (i) (02 

(i) (02 (i) + B~ x,~ exp ( ~  y) + c~) ~g>: e~p (X(L Y) 
a2 ] 

+ D~ ) 2 ~  exp (2~{ y) + ~y2 f(o (y) . (is) 

O.)(i = _ 

m = l  

�9 m g x  
sin ~ [A~ ) exp (2~)~ y) 

+ B~ ) exp (2~)~ y) + C~ ) exp (2~)~ y) 

+ D~ ) exp (2~). y) +f~i)(y)] (19) 

• ( i )  ~ _ 

xy 
m=l 

( / ~ )  c o s ~  -~ IA}.i)2~)~ exp(2~),y) 

B C02~ i) ~xn/~ci) v~-4- eli) ~0) exp (2~) y) 
rn m a  -- '~1~ \ ' v m 2  .:'t -- ~m "~rn3 

" t + o~ x~ ~ p  (xZ y) + ~ f2 ~(y) �9 (2o) 

Journal of Engineering Math., Vol.  8 (1974) 1 3 3 - 1 3 9  



136 

/2(i) = - -  

m = l  

+ B~} [~  

+ c~) fxZ 

(i)2 
+Dg ) [2m:~ 

LE~ ) 

Vxy kT) I 
- - -  - , m, expt2U) Y ' E~' J 

v,~ t T  ) [ exp(2~)j) 
E{/) J 

E~ 0 exp (2g)~ y) 

E~i-=) .j exp (2~ y) 

1 d ~ r } 
+ E# ) dY 2 f~i)(y) _ ~ f(i}(y)+a~)y~O(y) 
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(21) 

vU ) ~ . mnx { Iv u) ( rn~)2] 
= - s m ~ - -  A~ ) I" : '  2~ + \ I / / exn  t2{'),,~ 

m = 1 " ' m l  - - y  J 

�9 ( i )  

+ c~) LE2)I ~y= '~)3 + ~ 2 m 3  r J exp  (2~) a y) 

(-/)21 
,0(i) 

+ D~) I "Yx ,~i) exp (2~)~ y) 
LEI)--m, + Z,,E, J 

where the integrals represent indefinite integrals. 
For each expansion term m are four constants A~ ), B~ }, C~ ), D~ ~ corresponding to the i th 

layer. If there are n layers in the beam, then the 4n constants are determined by the 4n Equations 
(6) and (9) using the results (18)-(22). 

3. Numerical examples 

Example 1: 
As an example let us consider a problem in transient thermal stress. Consider a thin composite 
beam which is initially under an arbitrary temperature T=  9 (x). Suppose the beam is insulated 
on all its faces except at the ends x = 0, I which are kept at zero temperature. Also, let us assume 
that the heat conduction behavior of the composite beam is isotropic and homogeneous. The 
diffusion equation then gives for any time t the temperature distribution 

y2~2~q mTcx 
,~=1,3,5 . . . .  \ 12 } s i n ~ - -  (23) 
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where ~ is the thermal diffusivity and 

2 y I mnx 
Y" = 1 o g(x) sin ~ -  dx. 

If, for definiteness, we choose 

g(x) = ~- (x 3 -  12x) 

then 
12To(- 1) 1 ( 12T0(-- 1) ~ f~i)(y) _ E(0~(0 exp 

Ym -- m 3 TC 3 ~ m 5  7~ 5 - y  -.y 

(24) 

(25) 

m27z21f't~ (26) 
12 / "  

Consider a symmetric 3-layer composite beam which has a very severe difference in the 
thermal expansion coefficients of the layers, The layers of equal thickness possess the following 
properties 

E~ 1) = F, (3) = E = 3 x 10 6 psi,  Eo) = • ( 3 )  = 10E --y --x --x 

V(1) (3) ( (3) v /10 ,  xr : v x y  v 0.2 vl) z ~ ~ ~ Yyx  

G(1) G (3)-- El3 E~2)= E~ 2) E ,  v(2) .(2) xy ~ Xy ~ ~ --Xy ~ vyX ~ 1) 

@1)= @3) = ~ = 2.5 x 10 -6 in/in/oV, ct~) = c~3) = 6~, 

G (2)-- E/3 xy 

Note that the center layer would be isotropic if G(x 2) = E/2.4 and that the outer layers simulate 
a high modulus unidirectional boron/epoxy lamina. 

From (18)-(22) the stress and displacement components can be expressed in terms of 12 
arbitrary constants. These constants are determined by the 12 boundary and interface conditions 
from (6) and (9). The normal stress components in each layer at the mid-span of the beam are  
given in Table 1. Nine terms of the series were used in the calculation. 

Example la: 
In the case of an isotropic homogeneous beam in Example 1 the stress function is obtained in 
the form 

~ ) ( X ,  y ,  t )  z ~ ,  1 2 T ~ 1 7 6  Q l -  cosh  ~ h )  
m5n 5 = 1 -  (m~-  lh) sinhmrcy 

m = 1,3,5 -]- sinh m 1 

- - cosh 
~--f-- -]- Slnl'l - ~ - )  

mrch 
sinh - -  

_ l mlh) ~ ) s i n h  ~ }  sin ~ exp ( m2n2tct-t (27) 

+ s i n  h - -  

The corresponding series for the stress components are identical to the results given in Equations 
(57) to (61) of Reference [1] which were obtained by reducing a double Fourier series solution 
to a single Fourier series by explicit summation over one index. This reduction is possible only 
in certain special cases. The results for an isotropic homogeneous beam are given, in parenthesis, 
in Table 1 for comparison with the composite beam results. 
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TABLE 1 

y/h Layer aJ(ToE~)  %/ (ToEe lO  - 2) 
number 

0 0.3131 (-0.001166) 0 (0) 
1/15 0.3183 (-0.000730) 0.0069 (0,000022) 
2/15 1 0:3269 (-0.000356) 0.0277 (0.000076) 
3/15 0,3392 (-0.000046) 0.0630 (0.000146) 
4/15 0.3552 (0.000202) 0.1131 (0.000219) 
5/15 0.3752 ( 0!000388) 0.1788 (0.000283) 

5/15 -0.6746 (0,000388) 0.1788 (0.000283) 
6/15 -0.6730(0.000512) 0.2378 (0.000330) 
7/15 2 -0.6721 (0.000574) 0.2673 (0.000355) 
8/15 -0.6721 (0.000574) 0.2673 (0.000355) 
9/15 --0.6730 (0,000512) 0.2378 (0.000300) 

10/15 -0.6746 (0.000388) 0.1788 (0.000283) 

10/15 0.3752 (0.000388) 0.1788 (0.000283) 
1t/15 0.3552 (0.000202) 0.1131 (0.000219) 
12/15 3 0.3392 ( -  0.000046) 0.0630 (0.000146) 
13/15 0.3269 ( -  0.000356) 0.0277 (0.000076) 
14/15 0.3183 (-0.000730) 0.0069 (0.000022) 
15/15 0.3131 (--0,001166) 0 (0) 

Note:  x/l = 0.50, h/I = 01, Ktlz2/l 2 = 1. 
Nine terms of the series were used in the calculation. 
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Example 2: 
In the next example, let us consider a composite beam with the same properties as in Example 1 
under a steady temperature distribution T(x, y) which is an explicit function of x and y. The 
beam is kept at zero temperature on the three faces x = 0 ,  l and y = 0  and at T(x, h)=(To/13) 
(X 3 _ 12 X) on face y ---= h. Assuming the temperature distribution T(x, y) in the beam is determined 
by the harmonic equation, we have 

where 

r(x, y) = ~ Ym(Y) sin mnx (28) 
m = 1,3,5 l 

sinh mny 
1 2 T o ( -  1)" 1 (29) 

Y , . ( y )  - m 3 ~ 3  m ~ h  " 
sinh - -  

1 

Thus, the particular integral of (13) is given as 

sinh mny 
12To(-1)'~I2 (_E~ -~(~ 4-r~(~ ) 1 -x -- --, (30) 

frO(y)= m5n 5 1 + E(r 0 C~i)- s i n h - -  1 + 2v~i)~ 1 - torch " 

xy/  l 

Again, from (18)-(22) the stress and displacement components can be expressed in terms of 
12 arbitrary constants which are determined by 12 boundary and interface conditions from (6) 
and (9). The normal stress components in each layer at the mid-span of the beam are given in 
Table 2. This example demonstrates that the proposed single Fourier series method can be 
applied to heterogeneous anisotropic beams with an arbitrary variation of temperature in the 
y-direction as well as the x-direction. 
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TABLE 2 

y/h Layer ax/(ToEe) ar/(ToEo:lO - z) 
number 

0 1.4077 0 
1/15 1.3761 0.0241 
2/15 1 1.3604 0.0968 
3/15 1.3621 0.2186 
4/15 1.3832 0.3902 
5/15 1.4245 0.6120 

5/15 -1.8904 0.6120 
6/15 -2.2941 0.8226 
7/15 2 -2.7000 0.9506 
8/15 -3.1084 0.9815 
9/15 -3.5197 0.9006 

10/15 -3.9343 0.6934 

10/15 1.4879 0.6934 
11/15 1.4655 0.4451 
12/15 3 1.4752 0.2509 
13/15 1.5187 0.1115 
14/15 1.5975 0.0276 
15/15 1.7137 0 

Note: x/l=0.5, h/l=0.1. 
Twelve terms of the series were used in the calculation of a~. 
Eighteen terms of the series were used in the calculation of ay. 
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4. Conclusions 

This paper presents an exact thermoelasticity solution for thin rectangular beams with any 
number of orthotropic or isotropic layers. The anisotropy of material properties can be the 
elastic constants or thermal expansion coefficients. The present method is useful for the thermal 
stress analysis of high strength laminated beams such as boron/epoxy or graphite/epoxy which 
have very high anisotropy. 

A closed form single Fourier series solution can always be obtained by using the present 
method. This is the main advantage over the double Fourier series method developed by Wah 
[1]. The single Fourier series method has obvious numerical advantages over double Fourier 
series formulations. 

R E F E R E N C E S  

1-1] T. Wah, Thermal stresses in thin beams, Int. J. Solids Struc., 2 (1966) 293. 
[~2] B.A. Boley, Determination of temperature, stresses and deflections in two-dimensional thermoelastic problems, 

J. Aeronaut. Sci., 22 (1956) 67. 
[3] B.A. Boley and I. S. Tolins, On the stresses and deflections of rectangular beams, J. Appl. Mech., 23 (1956) 339. 
1-4] B. A. Boley and R. B. Testa, Thermal stresses in composite beams, Int. J. Solid Struc., 5 (1969) 1153. 
[5] S. W. Tsai and D. Azzi, Strength of laminated composite materials, AIAA J., 4 (1966) 296. 

Journal of Engineering Math., Vol. 8 (1974) 133-139 


